Text Analytics Toolbox™
DEIIES

MATLAB

R2018a -) MathWorks:

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Text Analytics Toolbox ™ Examples
© COPYRIGHT 2017-2018 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks . com/patents for more information.

Revision History

September 2017 Online Only New for Version 1.0
March 2018 Online Only Revised for Version 1.1 (Release 2018a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

Text Analytics Toolbox Examples

1]

Extract Text Datafrom Files 1-2
Create Simple Text Model for Classification 1-9
Prepare Text Data for Analysis 1-16
Visualize Text Data Using Word Clouds 1-26
Analyze Text Data Using Topic Models 1-32
Choose Number of Topics for LDA Model 1-41
Compare LDA Solvers 1-46
Analyze Text Data Using Multiword Phrases 1-51
Visualize Word Embeddings Using Text Scatter Plots 1-60

Classify Text Data Using Deep Learning 1-68

iii

Text Analytics Toolbox Examples

1 fext Analytics Toolbox Examples

Extract Text Data from Files

1-2

This example shows how to extract the text data from text, HTML, Microsoft® Word, PDF,
CSV, and Microsoft Excel® files and import it into MATLAB for analysis.

Usually, the easiest way to import text data into MATLAB is to use the extractFileText
function. This function extracts the text data from text, PDE, HTML, and Microsoft Word
files. To import text from CSV and Microsoft Excel files, use readtable. To extract text
from HTML code, use extractHTMLText. To read data from PDF forms, use
readPDFFormData.

Text Files

Extract the text from sonnets. txt using extractFileText. The file sonnets. txt
contains Shakespeare's sonnets in plain text.

filename = "sonnets.txt";
str = extractFileText(filename);

View the first sonnet by extracting the text between the two titles "I" and "II".
start = " I" + newline;

fin = " II";
sonnetl = extractBetween(str,start, fin)

sonnetl
From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thy self thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament,
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

Extract Text Data from Files

Microsoft Word Documents

Extract the text from sonnets.docx using extractFileText. The file
exampleSonnets.docx contains Shakespeare's sonnets in a Microsoft Word document.

filename = "exampleSonnets.docx";
str = extractFileText(filename);

View the second sonnet by extracting the text between the two titles "II" and "III".
start = " II" + newline;
fin = " III";
sonnet2 = extractBetween(str,start,fin)
sonnet2 =
When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held:
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer 'This fair child of mine
Shall sum my count, and make my old excuse,'
Proving his beauty by succession thine!

This were to be new made when thou art old,

And see thy blood warm when thou feel'st it cold.

1-3

1 fext Analytics Toolbox Examples

1-4

The example Microsoft Word document uses two newline characters between each line.
To replace these characters with a single newline character, use the strrep function.

sonnet2 = strrep(sonnet2, [newline newline],newline)

sonnet2
When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held:
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer 'This fair child of mine
Shall sum my count, and make my old excuse,'
Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.

PDF Files

Extract the text from sonnets.pdf using extractFileText. The file
exampleSonnets.pdf contains Shakespeare's sonnets in a PDF.

filename = "exampleSonnets.pdf";
str = extractFileText(filename);

View the third sonnet by extracting the text between the two titles "III" and "IV". This
PDF has a space before each newline character.

start = " III " + newline;
fin = "IV";
sonnet3 = extractBetween(str,start,fin)

sonnet3 =

Look in thy glass and tell the face thou viewest

Extract Text Data from Files

Now is the time that face should form another;
Whose fresh repair if now thou not renewest,
Thou dost beguile the world, unbless some mother.
For where is she so fair whose unear'd womb
Disdains the tillage of thy husbandry?
Or who is he so fond will be the tomb,
0f his self-love to stop posterity?
Thou art thy mother's glass and she in thee
Calls back the lovely April of her prime;
So thou through windows of thine age shalt see,
Despite of wrinkles this thy golden time.

But if thou live, remember'd not to be,

Die single and thine image dies with thee.

To read text data from PDF forms, use readPDFFormData. The function returns a struct
containing the data from the PDF form fields.

filename = "weatherReportForml.pdf";
data = readPDFFormData(filename)

data = struct with fields:
event type: "Thunderstorm Wind"
event narrative: "Large tree down between Plantersville and Nettleton."

HTML Code

To extract text data from a saved HTML file, use extractFileText.

filename = "exampleSonnets.html";
str = extractFileText(filename);

View the forth sonnet by extracting the text between the two titles "IV" and "V".

start = " IV" + newline;
fin = " V",
sonnet4 extractBetween(str,start,fin);

sonnet4 strrep(sonnet4, [newline newline],newline)

sonnet4

1-5

1 fext Analytics Toolbox Examples

1-6

Unthrifty loveliness, why dost thou spend Upon thy self thy beauty’'s legacy? Nati
Then, beauteous niggard, why dost thou abuse The bounteous largess given thee to
Then how when nature calls thee to be gone, What acceptable audit canst thou lea
Thy unused beauty must be tombed with thee, Which, used, lives th’ executor to b

To extract text data from a string containing HTML code, use extractHTMLText.

code = "<html><body><h1>THE SONNETS</hl><p>by William Shakespeare</p></body></html>";
str = extractHTMLText(code)

str =
"THE SONNETS

by William Shakespeare"

To extract text data from a web page, first read the HTML code using webread, and then
use extractHTMLText.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);
str = extractHTMLText (code)

str =
'Text Analytics Toolbox™ provides algorithms and visualizations for preprocessing,

Text Analytics Toolbox includes tools for processing raw text from sources such a

Using machine learning techniques such as LSA, LDA, and word embeddings, you can -

CSV and Microsoft Excel Files

To extract text data from CSV and Microsoft Excel files, use readtable and extract the
text data from the table that it returns.

Extract the text from the events narrative column of weatherReports.csv.

T = readtable('weatherReports.csv', 'TextType', 'string');
head(T)

ans=8x16 table
Time event id state event type d:

Extract Text Data from Files

22-Jul-2016
15-Jul-2016
15-Jul-2016
16-Jul-2016
15-Jul-2016
15-Jul-2016
15-Jul-2016
15-Jul-2016

16:
17:
17:
12:
14:
16:
16:
17:

10:
15:
25:
46:
28:
31:
03:
27:

str = T.event _narrative;

str(1:10)

ans = 10x1 string array
"Large tree down between Plantersville and Nettleton."

"One to two feet of deep standing water developed on a street on the
"NWS Columbia relayed a report of trees blown down along Tom Hall St.

(o)) o) e o) le) o) o)l

.4433e+05
.5182e+05
.5183e+05
.5183e+05
.4332e+05
.4332e+05
.4343e+05
.4344e+05

"MISSISSIPPI"
"SOUTH CAROLINA"
"SOUTH CAROLINA"
"NORTH CAROLINA"
"MISSOURT"
"ARKANSAS"
"TENNESSEE"
"TENNESSEE"

"Thunderstorm
"Heavy Rain"
"Thunderstorm
"Thunderstorm
"Hail"
"Thunderstorm
"Thunderstorm
"Hail"

"Media reported two trees blown down along I-40 in the 0ld Fort area."

"A few tree limbs greater than 6 inches down on HWY 18 in Roseland."
"Awning blown off a building on Lamar Avenue. Multiple trees down near the interse
"Quarter size hail near Rosemark."
"Tin roof ripped off house on 0ld Memphis Road near Billings Drive. Several large -

"Powerlines down at Walnut Grove and Cherry Lane roads."

Extract Text from Multiple Files

Wind"

Wind"
Wind"

Wind"
Wind"

Winthrop

If your text data is contained in multiple files in a folder, then you can import the text data

into MATLAB using a file datastore.

Create a file datastore for the example sonnet text files. The examples files are named
"exampleSonnetN. txt", where N is the number of the sonnet. Specify the filename
using the wildcard "*" to find all filenames of this structure. To specify the read function

to be extractFileText, input this function to fileDatastore using a function handle.

fds

fds =

FileDatastore with properties:

Files:

{

fileDatastore('exampleSonnet*.txt', 'ReadFcn',@extractFileText)

Unive

" ...\Documents\MATLAB\examples\textanalytics-ex15735454

1-7

1 fext Analytics Toolbox Examples

1-8

" ...\Documents\MATLAB\examples\textanalytics-ex15735454
" ...\Documents\MATLAB\examples\textanalytics-ex15735454
. and 1 more
}
UniformRead: 0
ReadFcn: @extractFileText
AlternateFileSystemRoots: {}

Loop over the files in the datastore and read each text file.

str

= [1;

while hasdata(fds)

end

textData = read(fds);
str = [str; textData];

View the extracted text.

str

str = 4x1 string array
" From fairest creatures we desire increase,« That thereby beauty's rose might ne
" When forty winters shall besiege thy brow,« And dig deep trenches in thy beaut
" Look in thy glass and tell the face thou viewesta Now is the time that face sh
" Unthrifty loveliness, why dost thou spende« Upon thy self thy beauty's legacy?«

See Also

extractFileText | readPDFFormData

Related Examples

“Prepare Text Data for Analysis” on page 1-16

“Create Simple Text Model for Classification” on page 1-9
“Visualize Text Data Using Word Clouds” on page 1-26
“Analyze Text Data Using Topic Models” on page 1-32
“Analyze Text Data Using Multiword Phrases” on page 1-51
“Classify Text Data Using Deep Learning” on page 1-68

Create Simple Text Model for Classification

Create Simple Text Model for Classification

This example shows how to train a simple text classifier on word frequency counts using a
bag-of-words model.

You can create a simple classification model which uses word frequency counts as
predictors. This example trains a simple classification model to predict the event type of
weather reports using text descriptions.

To reproduce the results of this example, set rng to 'default’.
rng('default")
Load and Extract Text Data

Load the example data. The file weatherReports. csv contains weather reports,
including a text description and categorical labels for each event.

filename = "weatherReports.csv";
data = readtable(filename, 'TextType','string');
head(data)

ans=8x16 table
Time event id state event type

22-Jul-2016 16:10:00 6.4433e+05 "MISSISSIPPI" "Thunderstorm Wind"
15-Jul-2016 17:15:00 6.5182e+05 "SOUTH CAROLINA" "Heavy Rain"
15-Jul-2016 17:25:00 6.5183e+05 "SOUTH CAROLINA" "Thunderstorm Wind"
16-Jul-2016 12:46:00 6.5183e+05 "NORTH CAROLINA" "Thunderstorm Wind"
15-Jul-2016 14:28:00 6.4332e+05 "MISSOURI" "Hail"
15-Jul-2016 16:31:00 6.4332e+05 "ARKANSAS" "Thunderstorm Wind"
15-Jul-2016 16:03:00 6.4343e+05 "TENNESSEE" "Thunderstorm Wind"
15-Jul-2016 17:27:00 6.4344e+05 "TENNESSEE" "Hail"

Remove rows with empty reports.

idx = strlength(data.event narrative) == 0;

data(idx,:) = [1;

Convert the labels in the event type column of the table to categorical and view the
distribution of the classes in the data using a histogram.

1-9

1 fext Analytics Toolbox Examples

Frequency

1-10

data.event type = categorical(data.event type);
figure

h = histogram(data.event type);

xlabel("Class")

ylabel("Frequency")

title("Class Distribution")

Class Distribution

1DDDDIII
g000 b
6000 b
4000 b
2000]
D [A an NN |I| [I |
EEE Eaoes ﬁ%@’%‘ﬁ%gggﬁggggﬁgggﬁ %}E% %E:E%%E%%
= A = [l wmH==
%ﬁumgmwuw =0 m:-:”‘uimu-z g%%i%m %m Gﬁﬂﬁm 3

SmmmosenB e 2o 2xosSonaoopcceed o

J>Tesag S Sw= N E%%‘jﬂ‘-‘aa—'mmﬁ 380 w555 Om Eaf_

=L pgh Ca¢st dos 1@ c oElsinay ohsh B2 S8

b fal= 3 ZI'__E LLl e qm.__g‘: = =oa

= = gf_:l LtLLLL N m= mEquJ — gg

= 0 e Eé = —Took 59 - =

=] a] o m:gc_'l'l = 5

5 £ -7 = @2 ¥ =

2 E =5 =

< = 2¢=

w ke
==
Class

The classes of the data are imbalanced, with several classes containing few observations.
To ensure that you can partition the data so that the partitions contain observations for
each class, remove any classes which appear fewer than ten times.

Get the frequency counts of the classes and their names from the histogram.

Create Simple Text Model for Classification

classCounts = h.BinCounts;
classNames = h.Categories;

Find the classes containing fewer than ten observations and remove these infrequent
classes from the data.

idxLowCounts = classCounts < 10;

infrequentClasses = classNames(idxLowCounts);

idxInfrequent = ismember(data.event type,infrequentClasses);
data(idxInfrequent,:) = [1;

Partition the data into a training partition and a held-out test set. Specify the holdout
percentage to be 10%.

cvp = cvpartition(data.event type, 'Holdout',0.1);
dataTrain = data(cvp.training,:);
dataTest = data(cvp.test,:);

Extract the text data and labels from the tables.

textDataTrain = dataTrain.event narrative;
textDataTest = dataTest.event narrative;
YTrain = dataTrain.event type;

YTest = dataTest.event type;

Prepare Text Data for Analysis

Create a function which tokenizes and preprocesses the text data so it can be used for
analysis. The function preprocessWeatherNarratives, performs the following steps in
order:

Erase punctuation using erasePunctuation.

Convert the text data to lowercase using lower.

Tokenize the text using tokenizedDocument.

Remove a list of stop words (such as "and", "of", and "the") using removeWords and
stopWords.

Remove words with 2 or fewer characters using removeShortWords.
Remove words with 15 or more characters using removeLongWords.

A W N R

7 Normalize the words using the Porter stemmer using normalizeWords.

Use the example preprocessing function preprocessWeatherNarratives to prepare
the text data.

1-11

1 fext Analytics Toolbox Examples

documents = preprocessWeatherNarratives(textDataTrain);
documents(1:5)

ans =
5x1 tokenizedDocument:

(1,1) 5 tokens: larg tree down plantersvil nettleton

(2,1) 18 tokens: two feet deep stand water develop street winthrop univers campu inch
(3,1) 9 tokens: nw columbia relai report tree blown down tom hall

(4,1) 10 tokens: media report two tree blown down i40 old fort area

(5,1) 8 tokens: few tree limb greater inch down hwy roseland

Create a bag-of-words model from the tokenized documents.

bag bagO0fWords (documents)
bag =
bagOfWords with properties:

Counts: [25316x16906 double]
Vocabulary: [1x16906 string]
NumWords: 16906
NumDocuments: 25316

Remove words from the bag-of-words model that do not appear more than two times in
total. Remove any documents containing no words from the bag-of-words model, and
remove the corresponding entries in labels.

bag = removelInfrequentWords(bag,2);
[bag,idx] = removeEmptyDocuments(bag);
YTrain(idx) = [];

bag

bag =
bagOfWords with properties:

Counts: [25315x6247 double]
Vocabulary: [1x6247 string]
NumWords: 6247
NumDocuments: 25315

1-12

Create Simple Text Model for Classification

Train Supervised Classifier

Train a supervised classification model using the word frequency counts from the bag-of-
words model and the labels.

Train a multiclass linear classification model using fitcecoc. Specify the Counts
property of the bag-of-words model to be the predictors, and the event type labels to be
the response. Specify the learners to be linear. These learners support sparse data input.

XTrain = bag.Counts;
mdl = fitcecoc(XTrain,YTrain, 'Learners', 'linear’')

mdl =
classreg.learning.classif.CompactClassificationECOC
ResponseName: 'Y'
ClassNames: [1x39 categoricall
ScoreTransform: 'none'
BinarylLearners: {741x1 cell}
CodingMatrix: [39x741 double]

Properties, Methods

For a better fit, you can try specifying different parameters of the linear learners. For
example, if you specify 'Learners' to be templateLinear('Solver', 'lbfgs'),
then you might experience improved accuracy at the cost of a slower fit. For more
information on linear classification learner templates, see templateLinear.

Test Classifier

Predict the labels of the test data using the trained model and calculate the classification
accuracy. The classification accuracy is the proportion of the labels that the model
predicts correctly.

Preprocess the test data using the same preprocessing steps as the training data. Encode
the resulting test documents as a matrix of word frequency counts according to the bag-
of-words model.

documentsTest = preprocessWeatherNarratives(textDataTest);
XTest = encode(bag,documentsTest);

Predict the labels of the test data using the trained model and calculate the classification
accuracy.

1-13

1 fext Analytics Toolbox Examples

1-14

YPred = predict(mdl,XTest);
acc = sum(YPred == YTest)/numel(YTest)

acc = 0.8829

Predict Using New Data

Classify the event type of new weather reports. Create a string array containing the new
weather reports.

str = [...
"A large tree is downed and blocking traffic outside Apple Hill."
"Damage to many car windshields in parking lot."
"Lots of water damage to computer equipment inside the office."];
documentsNew = preprocessWeatherNarratives(str);
XNew = encode(bag,documentsNew) ;
labelsNew = predict(mdl,XNew)

labelsNew = 3x1 categorical array
Thunderstorm Wind
Thunderstorm Wind
Flash Flood

Example Preprocessing Function

The function preprocessWeatherNarratives, performs the following steps in order:

Erase punctuation using erasePunctuation.
Convert the text data to lowercase using lower.
Tokenize the text using tokenizedDocument.

A W N R

Remove a list of stop words (such as "and", "of", and "the") using removeWords and
stopWords.

Remove words with 2 or fewer characters using removeShortWords.
Remove words with 15 or more characters using removeLongWords.

Normalize the words using the Porter stemmer using normalizeWords.
function documents = preprocessWeatherNarratives(textData)
% Erase punctuation.
cleanTextData = erasePunctuation(textData);

% Convert the text data to lowercase.

See Also

cleanTextData = lower(cleanTextData);

% Tokenize the text.
documents = tokenizedDocument(cleanTextData);

% Remove a list of stop words.
documents = removeWords(documents,stopWords);

% Remove words with 2 or fewer characters, and words with 15 or greater
% characters.

documents
documents

removeShortWords (documents,?2);
removeLongWords (documents,15);

% Normalize the words using the Porter stemmer.
documents = normalizeWords(documents);

end

See Also

bagO0fWords | normalizeWords | tokenizedDocument | wordcloud

Related Examples

. “Prepare Text Data for Analysis” on page 1-16

. “Visualize Text Data Using Word Clouds” on page 1-26

. “Analyze Text Data Using Topic Models” on page 1-32

. “Analyze Text Data Using Multiword Phrases” on page 1-51
. “Classify Text Data Using Deep Learning” on page 1-68

1-15

1 fext Analytics Toolbox Examples

Prepare Text Data for Analysis

This example shows how to create a function which cleans and preprocesses text data for
analysis.

Text data can be large and can contain lots of noise which negatively affects statistical
analysis. For example, text data can contain the following:

* Variations in case, for example "new" and "New"

* Variations in word forms, for example "walk" and "walking"

* Words which add noise, for example stop words such as "the" and "of"

* Punctuation and special characters

« HTML and XML tags

These word clouds illustrate word frequency analysis applied to some raw text data from
weather reports, and a preprocessed version of the same text data.

1-16

Prepare Text Data for Analysis

Raw Data

ai}' across county
e inches ™

blown larga

reported measured
b‘r was . trees .

' gng.inner

from

an ol £ Of e

hall On .. gust
l:'.‘?‘f'-'_-""-‘l' de 0 gusts
down th e trﬁﬁ;;'”* .
R?ad a ! The tomado
along o
thunderstorm W?J!e EanW
resscmde d |th mph amage
s wm ds | H'q"“""a‘f
e flnndlng
l:lJ"K:I

Load and Extract Text Data

Clean Data

thunderstorm
da mag racard

arcuund ared - 'gl '

. mph: ' MOW

i%iii;i; rfjkg](j tomado

li
- BOOG\ind M.
Mi estim tree bID:”n
';}CCIJI' ue
1:|F|:|ser'.r report Iarg -
apofter home '.” pask nearr_ﬂdl

et hal I n C mile P

raln it aq Shorm f "
vower JOWN “water
countl highwai
un QUSE G5 ™
hour measur

praduc QUArEr

Load the example data. The file weatherReports. csv contains weather reports,
including a text description and categorical labels for each event.

filename = "weatherReports.csv";

data = readtable(filename, 'TextType', 'string');

Extract the text data from the field event narrative, and the label data from the field

event type.

textData = data.event narrative;

labels = data.event type;
textData(1:10)

1-17

1 fext Analytics Toolbox Examples

1-18

ans = 10x1 string array
"Large tree down between Plantersville and Nettleton."
"One to two feet of deep standing water developed on a street on the Winthrop Unive
"NWS Columbia relayed a report of trees blown down along Tom Hall St."
"Media reported two trees blown down along I-40 in the 0ld Fort area."

"A few tree limbs greater than 6 inches down on HWY 18 in Roseland."

"Awning blown off a building on Lamar Avenue. Multiple trees down near the interse
"Quarter size hail near Rosemark."

"Tin roof ripped off house on 0ld Memphis Road near Billings Drive. Several large -
"Powerlines down at Walnut Grove and Cherry Lane roads."

Prepare String Data for Tokenizing

Erase the punctuation from the text data.

cleanTextData = erasePunctuation(textData);
cleanTextData(1:10)

ans = 10x1 string array
"Large tree down between Plantersville and Nettleton"
"One to two feet of deep standing water developed on a street on the Winthrop Unive
"NWS Columbia relayed a report of trees blown down along Tom Hall St"
"Media reported two trees blown down along I40 in the 0Old Fort area"

"A few tree limbs greater than 6 inches down on HWY 18 in Roseland"

"Awning blown off a building on Lamar Avenue Multiple trees down near the intersec
"Quarter size hail near Rosemark"

"Tin roof ripped off house on Old Memphis Road near Billings Drive Several large t
"Powerlines down at Walnut Grove and Cherry Lane roads"

Convert the text data to lowercase.

cleanTextData = lower(cleanTextData);
cleanTextData(1:10)

ans = 10x1 string array
"large tree down between plantersville and nettleton"

"one to two feet of deep standing water developed on a street on the winthrop unive
"nws columbia relayed a report of trees blown down along tom hall st"
"media reported two trees blown down along i40 in the old fort area"

"a few tree limbs greater than 6 inches down on hwy 18 in roseland"

Prepare Text Data for Analysis

"awning blown off a building on lamar avenue multiple trees down near the intersec
"quarter size hail near rosemark"

"tin roof ripped off house on old memphis road near billings drive several large t
"powerlines down at walnut grove and cherry lane roads"

Create Tokenized Documents

Create an array of tokenized documents.

cleanDocuments = tokenizedDocument(cleanTextData);
cleanDocuments(1:10)

ans =
10x1 tokenizedDocument:

(1,1) 7 tokens: large tree down between plantersville and nettleton

(2,1) 37 tokens: one to two feet of deep standing water developed on a street on the \
(3,1) 13 tokens: nws columbia relayed a report of trees blown down along tom hall st
(4,1) 13 tokens: media reported two trees blown down along i40 in the old fort area
(5,1) 0O tokens:

(6,1) 14 tokens: a few tree limbs greater than 6 inches down on hwy 18 in roseland
(7,1) 18 tokens: awning blown off a building on lamar avenue multiple trees down near
(8,1) 5 tokens: quarter size hail near rosemark

(9,1) 19 tokens: tin roof ripped off house on old memphis road near billings drive se\
(10,1) 9 tokens: powerlines down at walnut grove and cherry lane roads

Words like "a", "and", "to", and "the" (known as stop words) can add noise to data.
Remove a list of stop words using the stopWords and removeWords functions.

cleanDocuments = removeWords(cleanDocuments,stopWords);
cleanDocuments(1:10)

ans =
10x1 tokenizedDocument:

(1,1) 5 tokens: large tree down plantersville nettleton

(2,1) 18 tokens: two feet deep standing water developed street winthrop university cair
(3,1) 10 tokens: nws columbia relayed report trees blown down tom hall st

(4,1) 10 tokens: media reported two trees blown down 140 old fort area

(5,1) 0O tokens:

(6,1) 10 tokens: few tree limbs greater 6 inches down hwy 18 roseland

(7,1) 13 tokens: awning blown off building lamar avenue multiple trees down near inte
(8,1) 5 tokens: quarter size hail near rosemark

1-19

1 fext Analytics Toolbox Examples

1-20

(9,1) 16 tokens: tin roof ripped off house old memphis road near billings drive sever:
(10,1) 7 tokens: powerlines down walnut grove cherry lane roads

Remove words with 2 or fewer characters, and words with 15 or greater characters.

cleanDocuments = removeShortWords(cleanDocuments,?2);
cleanDocuments = removeLongWords(cleanDocuments,15);
cleanDocuments(1:10)

ans =
10x1 tokenizedDocument:

(1,1) 5 tokens: large tree down plantersville nettleton

(2,1) 18 tokens: two feet deep standing water developed street winthrop university cair
(3,1) 9 tokens: nws columbia relayed report trees blown down tom hall

(4,1) 10 tokens: media reported two trees blown down 140 old fort area

(5,1) 0O tokens:

(6,1) 8 tokens: few tree limbs greater inches down hwy roseland

(7,1) 13 tokens: awning blown off building lamar avenue multiple trees down near inte
(8,1) 5 tokens: quarter size hail near rosemark

(9,1) 16 tokens: tin roof ripped off house old memphis road near billings drive seversx:
(10,1) 7 tokens: powerlines down walnut grove cherry lane roads

Normalize the words using the Porter stemmer.

cleanDocuments = normalizeWords(cleanDocuments);
cleanDocuments(1:10)

ans =
10x1 tokenizedDocument:

(1,1) 5 tokens: larg tree down plantersvil nettleton

(2,1) 18 tokens: two feet deep stand water develop street winthrop univers campu inch
(3,1) 9 tokens: nw columbia relai report tree blown down tom hall

(4,1) 10 tokens: media report two tree blown down i40 old fort area

(5,1) 0O tokens:

(6,1) 8 tokens: few tree limb greater inch down hwy roseland

(7,1) 13 tokens: awn blown off build lamar avenu multipl tree down near intersect win
(8,1) 5 tokens: quarter size hail near rosemark

(9,1) 16 tokens: tin roof rip off hous old memphi road near bill drive sever larg tre
(10,1) 7 tokens: powerlin down walnut grove cherri lane road

Prepare Text Data for Analysis

Create Bag-of-Words Model

Create a bag-of-words model.

cleanBag bag0fWords (cleanDocuments)

cleanBag =
bag0fWords with properties:

Counts: [36176x17816 double]
Vocabulary: [1x17816 string]
NumWords: 17816
NumDocuments: 36176

Remove words that do not appear more than two times in the bag-of-words model.
cleanBag = removeInfrequentWords(cleanBag,?2)

cleanBag =
bagOfWords with properties:

Counts: [36176x6651 double]
Vocabulary: [1x6651 string]
NumWords: 6651
NumDocuments: 36176

Some preprocessing steps such as removeInfrequentWords leaves empty documents in
the bag-of-words model. To ensure that no empty documents remain in the bag-of-words
model after preprocessing, use removeEmptyDocuments as the last step.

Remove empty documents from the bag-of-words model and the corresponding labels
from labels.

[cleanBag,idx] = removeEmptyDocuments(cleanBag);
labels(idx) = [1];
cleanBag

cleanBag =
bagOfWords with properties:

Counts: [28137x6651 double]

Vocabulary: [1x6651 string]
NumWords: 6651

1-21

1 fext Analytics Toolbox Examples

1-22

NumDocuments: 28137

Create a Preprocessing Function

It can be useful to create a function which performs preprocessing so you can prepare
different collections of text data in the same way. For example, you can use a function so
that you can preprocess new data using the same steps as the training data.

Create a function which tokenizes and preprocesses the text data so it can be used for
analysis. The function preprocessWeatherNarratives, performs the following steps in
order:

Erase punctuation using erasePunctuation.

Convert the text data to lowercase using Lower.

Tokenize the text using tokenizedDocument.

Remove a list of stop words (such as "and", "of", and "the") using removeWords and
stopWords.

Remove words with 2 or fewer characters using removeShortWords.
Remove words with 15 or more characters using removelLongWords.
7 Normalize the words using the Porter stemmer using normalizeWords.

B W N R

Use the example preprocessing function preprocessWeatherNarratives to prepare
the text data.

newText = "A tree is downed outside Apple Hill Drive, Natick";
newDocuments = preprocessWeatherNarratives (newText)

newDocuments =
tokenizedDocument:

7 tokens: tree down outsid appl hill drive natick

Compare with Raw Data

Compare the preprocessed data with the raw data.

rawDocuments = tokenizedDocument(textData);
rawBag = bag0fWords(rawDocuments)

rawBag =
bagOfWords with properties:

Prepare Text Data for Analysis

Counts: [36176x22720 double]
Vocabulary: [1x22720 string]
NumWords: 22720
NumDocuments: 36176

Calculate the reduction in data.

numWordsClean = cleanBag.NumWords;
numWordsRaw = rawBag.NumWords;
reduction = 1 - numWordsClean/numWordsRaw

reduction = 0.7073

Compare the raw data and the cleaned data by visualizing the two bag-of-words models
using word clouds.

figure
subplot(1,2,1)
wordcloud(rawBag) ;
title("Raw Data")
subplot(1,2,2)
wordcloud(cleanBag);
title("Clean Data")

1-23

1 fext Analytics Toolbox Examples

Raw Data

gusts aslimated
= damage
1 @CINOSS water
_".I'.' e mph al{’,‘lﬂg
county repgr’[ed
e (PEET tO. wingremsade

ovar
nwuh anea

hees

= 11
fol d tree

fioodi ng b
blown 0 Gn
hElII ™ = tgLISt

downth U

County was Rnad _
Higway \Were snow.

araund nasrce ralonm

—.inchessom

o [l | e
arge wWinds
¢ measured

Example Preprocessing Function

The function preprocessWeatherNarratives, performs the following steps in order:

Clean Data

th'ﬂhders’[orm
da m g heawvi

H1_'r.'.rd area i
: _1\ kit h ne
“=smpn ..snow

SEVEI‘ orna 2
fos drrc:radt %

~ mile Wlndm@r
i nedstimt re e SIZS
e
chsery re Iarg -
blown- blrﬂﬂlnearu—
= hail [N C Pome,_

e

NGUE A 1 1
e do Wn water

in S0Uth

+oner (GOU nt| highwai
1oda gust nfa r_k:urth

prroedu o

closa measur

quarlar

Erase punctuation using erasePunctuation.

1

2 Convert the text data to lowercase using lower.
3 Tokenize the text using tokenizedDocument.
4

Remove a list of stop words (such as "and", "of", and "the") using removeWords and
stopWords.

Remove words with 2 or fewer characters using removeShortWords.
Remove words with 15 or more characters using removelLongWords.

1-24

See Also

7 Normalize the words using the Porter stemmer using normalizeWords.

function [documents] = preprocessWeatherNarratives(textData)
% Erase punctuation.
cleanTextData = erasePunctuation(textData);

% Convert the text data to lowercase.
cleanTextData = lower(cleanTextData);

% Tokenize the text.
documents = tokenizedDocument(cleanTextData);

% Remove a list of stop words.
documents = removeWords(documents,stopWords);

% Remove words with 2 or fewer characters, and words with 15 or greater
% characters.

documents removeShortWords (documents,?2);

documents removelLongWords (documents,15);

% Normalize the words using the Porter stemmer.
documents = normalizeWords(documents);
end

See Also

bagOfWords | normalizeWords | tokenizedDocument | wordcloud

Related Examples

. “Extract Text Data from Files” on page 1-2

. “Create Simple Text Model for Classification” on page 1-9
. “Visualize Text Data Using Word Clouds” on page 1-26

. “Analyze Text Data Using Topic Models” on page 1-32

. “Analyze Text Data Using Multiword Phrases” on page 1-51
. “Classify Text Data Using Deep Learning” on page 1-68

1-25

1 fext Analytics Toolbox Examples

Visualize Text Data Using Word Clouds

1-26

This example shows how to visualize text data using word clouds.

Text Analytics Toolbox extends the functionality of the wordcloud (MATLAB) function. It
adds support for creating word clouds directly from string arrays, and creating word
clouds from bag-of-words models and LDA topics.

Load the example data. The file weatherReports. csv contains weather reports,
including a text description and categorical labels for each event.

filename = "weatherReports.csv";
T = readtable(filename, 'TextType', 'string');

Extract the text data from the event _narrative column.

textData = T.event narrative;
textData(1:10)

ans = 10x1 string array
"Large tree down between Plantersville and Nettleton."
"One to two feet of deep standing water developed on a street on the Winthrop Unive
"NWS Columbia relayed a report of trees blown down along Tom Hall St."
"Media reported two trees blown down along I-40 in the 0ld Fort area."
"A few tree limbs greater than 6 inches down on HWY 18 in Roseland."
"Awning blown off a building on Lamar Avenue. Multiple trees down near the interse
"Quarter size hail near Rosemark."
"Tin roof ripped off house on 0ld Memphis Road near Billings Drive. Several large -
"Powerlines down at Walnut Grove and Cherry Lane roads."

Create a word cloud from all the weather reports.

figure
wordcloud(textData);
title("Weather Reports")

Visualize Text Data Using Word Clouds

Weather Reports

thunderstorm -

daisge County o

ge = hours - Street east quarter
GEmﬁdt:::rnadm Wlnd Road Y o

ik .rf'.° smr'ggzn ! |;ﬁt re e S estimated tj”f"m Highway

arge

e re O rtﬁa . arrecorded
mf s homes p blown3nnwfa||
. mph dUE |II"'IES feetfe”knots S puwer
south ranqmarea I n Ch g peak

h e Ei"lf Creek

Numerﬂussnow F{werd nmrthobsewed kit

g e JO\WN s_ev[er[al
ﬂOOCj“”Q ““Zmeasured
Ked including rainfall <

LIH]

Compare the words in the reports with labels "Hail" and "Thunderstorm Wind".
Create word clouds of the reports for each of these labels. Specify the word colors to be
blue and magenta for each word cloud respectively.

figure
labels = T.event type;

subplot(1,2,1)

idx = labels == "Hail";
wordcloud(textData(idx), 'Color', 'blue');
title("Hail")

subplot(1,2,2)
idx = labels == "Thunderstorm Wind";

1-27

1 fext Analytics Toolbox Examples

wordcloud(textData(idx), 'Color',
title("Thunderstorm Wind")

Hail

;::Td:‘r r .:- 'rIH e
thunderstorm =rme
arsrri “""'Sp-ntter RrT——
(] I'ﬂl'lh Rioad nethe
= trained m'l-es miniutes

ccre e . st
cottal fEIllnChpUth sl

wakar

“reported--

dime

[F

”p’”” dnllar d

“&S’uan 1Z€

SoaCeal rd' SEEre F

=4t '1tatecq u a e r 2 v

1 e diameter
mcurred |"||{:kﬂ| ﬂbﬁrgvﬂ

Hi-;||'|'tl.|u:«1'5.I ——h
s South
oo duced ey

' ball & yeenmy
ol wands h Igelf -
media ne'er N

'magenta’');

Thunderstorm Wind
aouth frabds
o . Mumerous

Severel
ocked clamage" N

I
II1|:'I rsaction off e

Ceunty Ro ad “r'm';; "
reported

taa , ToOOF h

= 'arrwmds“ltf'_“

maasurad Rd podes
Multipla re e S e
hama

Spofief
st

<o dOWN =
Ao arcund

milea b

Fighway | sy gust

dkanmieder

thunderstorm

T neeng g Nehes

large- near T
power lines

“estimated
prosdsced {Rnnoandedd

Compare the words in the reports from the states Florida, Kansas, and Alaska. Create
word clouds of the reports for each of these states in rectangles and draw a border

around each word cloud.

figure
state = T.state;

subplot(1,3,1)

idx = state == "FLORIDA";
wordcloud(textData(idx), 'Shape',

title("Florida")

1-28

'rectangle', 'Box','on');

Visualize Text Data Using Word Clouds

subplot(1,3,2)
idx = state == "KANSAS";
wordcloud(textData(idx), 'Shape', 'rectangle', 'Box"','on");
title("Kansas")
subplot(1,3,3)
idx = state == "ALASKA";
wordcloud(textData(idx), 'Shape', 'rectangle', 'Box"','on");
title("Alaska")
Florida Kansas Alaska
.~ Storm fnlz;gdin” w4 Haines
e CDunty station Rt t peak
ot e QUE] .
Dar " damage
blown il inches =~
mowed s i s TS i fnet
p-c-".w:-r included neka ot ; ,,E! .u__u__l
I A
o s s reported reported
RDad -'n ii?!:::\, prDVéddqlluJ rits .-r DOT. p-:\'-: anche Cape
A rainfail kt _meast red
RGO I KT D R e
tornado Hading ; Li
el :.--..-.mp!:]'u Craak RaTs ::: qu'[-‘!}wa? i Hiprt
" woped e SFOS e Scria I chs: arcuns
e g size damage’
=21 jnches .ﬁ;md fima ey vuia__ River
damage inches | mph S
mada - Pass
estimated™ omaeo P
s S pacimber - aderi a4 511
PR S R rvm i o iy i
Bi':"j:hrald— e c:_-c:-:iurred
do wn \-;Iﬂd hail =" SNOW
reporte water down = T
areaﬂ'*" horme Highway 0 mnd alne

Compare the words in the reports with property damage reported in thousands of dollars

to the reports with damage reported in millions of dollars. Create word clouds of the
reports for each of these amounts with highlight color blue and red respectively.

1-29

1 fext Analytics Toolbox Examples

cost = T.damage property;

idx = endsWith(cost, "K");

figure

wordcloud(textData(idx), 'HighlightColor', 'blue');
title("Damage Reported in Thousands")

Damage Reported in Thousands

feet Fecorded ranged
knots

lines
= damage ¢ Moo O .
w 4 estimated

closed ..

around SIZE I n Ch eS cause hzeleavyincluqmg

?a?gi?qca'ttree S G PN =

peak U S th two
station g rainfall p rt d hallg?éa
River ¥

hours

miles o
N near Street
SnuwfallCou nt glh[n]md Rt[gaagd e

quarter o water blown occurred
produced prer roof measurEd
wom flooding
observer south
narsaction sustainad

idx = endsWith(cost,"M");

figure

wordcloud(textData(idx), 'HighlightColor', 'red');
title("Damage Reported in Millions")

1-30

See Also

Damage Reported in Millions

snapped |
approximately ,
widespread
s MO0 dOWN |\ ahicles P et
= destroyed v Parish

south

estimated Rogrm several s

ﬂash nes

occurred cet h property arwtomado hl,ag\ﬂljjlmnm
power Rlver OmeS tyéu,m.nm

" heavy

large area structure - State trees mmmgmm;
Street WINAS businesses

record roof *¢ Creek around

pD ed i tw:l hall near “ continued West h U8
rain fa" L
east INChES v a m a ralr;arE
= many closed ~ Jmajor
. caused..water- yighway e
. Nume rous h event
resulting C‘.ity . .r'l’lles
residents total InCIUdlng
northeast
See Also
wordcloud

Related Examples

. “Prepare Text Data for Analysis” on page 1-16

. “Analyze Text Data Using Topic Models” on page 1-32

. “Classify Text Data Using Deep Learning” on page 1-68

. “Visualize Word Embeddings Using Text Scatter Plots” on page 1-60

1-31

1 fext Analytics Toolbox Examples

Analyze Text Data Using Topic Models

1-32

This example shows how to use the Latent Dirichlet Allocation (LDA) topic model to
analyze text data.

A Latent Dirichlet Allocation (LDA) model is a topic model which discovers underlying
topics in a collection of documents and infers the word probabilities in topics.

To reproduce the results of this example, set rng to 'default’.
rng('default"')

Load and Extract Text Data

Load the example data. The file weatherReports. csv contains weather reports,
including a text description and categorical labels for each event.

data = readtable("weatherReports.csv", 'TextType', 'string');
head(data)

ans=8x16 table
Time event id state event type d:

22-Jul-2016 16:10:00 6.4433e+05 "MISSISSIPPI" "Thunderstorm Wind"
15-Jul-2016 17:15:00 6.5182e+05 "SOUTH CAROLINA" "Heavy Rain"
15-Jul-2016 17:25:00 6.5183e+05 "SOUTH CAROLINA" "Thunderstorm Wind"
16-Jul-2016 12:46:00 6.5183e+05 "NORTH CAROLINA" "Thunderstorm Wind"
15-Jul-2016 14:28:00 6.4332e+05 "MISSOURI" "Hail"

15-Jul-2016 16:31:00 6.4332e+05 "ARKANSAS™" "Thunderstorm Wind"
15-Jul-2016 16:03:00 6.4343e+05 "TENNESSEE" "Thunderstorm Wind"
15-Jul-2016 17:27:00 6.4344e+05 "TENNESSEE" "Hail"

Extract the text data from the field event _narrative.

textData = data.event narrative;
textData(1:10)

ans = 10x1 string array
"Large tree down between Plantersville and Nettleton."
"One to two feet of deep standing water developed on a street on the Winthrop Unive
"NWS Columbia relayed a report of trees blown down along Tom Hall St."
"Media reported two trees blown down along I-40 in the 0ld Fort area."

Analyze Text Data Using Topic Models

"A few tree limbs greater than 6 inches down on HWY 18 in Roseland."

"Awning blown off a building on Lamar Avenue. Multiple trees down near the interse
"Quarter size hail near Rosemark."

"Tin roof ripped off house on 0ld Memphis Road near Billings Drive. Several large -
"Powerlines down at Walnut Grove and Cherry Lane roads."

Prepare Text Data for Analysis

Create a function which tokenizes and preprocesses the text data so it can be used for
analysis. The function preprocessWeatherNarratives, performs the following steps in
order:

Erase punctuation using erasePunctuation.

Convert the text data to lowercase using lower.

Tokenize the text using tokenizedDocument.

A W N

Remove a list of stop words (such as "and", "of", and "the") using removeWords and
stopWords.

Remove words with 2 or fewer characters using removeShortWords.
Remove words with 15 or more characters using removelLongWords.
Normalize the words using the Porter stemmer using normalizeWords.

Use the example preprocessing function preprocessWeatherNarratives to prepare
the text data.

documents

= preprocessWeatherNarratives(textData);
documents(1:5)

ans =
5x1 tokenizedDocument:

(1,1) 5 tokens: larg tree down plantersvil nettleton

(2,1) 18 tokens: two feet deep stand water develop street winthrop univers campu inch
(3,1) 9 tokens: nw columbia relai report tree blown down tom hall
(4,1)
(5,1)

10 tokens: media report two tree blown down i40 old fort area
0 tokens:

Fit LDA Model

Create a bag-of-words model from the tokenized documents.

1-33

1 fext Analytics Toolbox Examples

1-34

bag = bagO0fWords(documents)

bag =
bagOfWords with properties:

Counts: [36176x17816 double]
Vocabulary: [1x17816 string]
NumWords: 17816
NumDocuments: 36176

Remove words from the bag-of-words model that have do not appear more than two times
in total. Remove any documents containing no words from the bag-of-words model.

bag = removelnfrequentWords(bag,2);
bag = removeEmptyDocuments(bag)
bag =

bagOfWords with properties:

Counts: [28137x6651 double]
Vocabulary: [1x6651 string]
NumwWords: 6651
NumDocuments: 28137

Fit an LDA model with 60 topics. For an example showing how to choose the number of
topics, see “Choose Number of Topics for LDA Model” on page 1-41.

numTopics = 60;
mdl = fitlda(bag,numTopics);

Initial topic assignments sampled in 2.17698 seconds.

Iteration	Time per	Relative	Training	Topic	Topic
	iteration	change in	perplexity	concentration	concentration
	(seconds)	log(L)	[iterations	
0	2.44		6.148e+02	15.000	0
1	9.75	1.6206e-01	2.511e+02	15.000	0
2	10.45	1.4324e-02	2.323e+02	15.000	0
3 10.54	4.5621e-03	2.266e+02	15.000	0	
4	10.29	3.2075e-03	2.227e+02	15.000	0
5	11.19	1.9081e-03	2.204e+02	15.000	0
6	10.15	1.1105e-03	2.191e+02	15.000	0

Analyze Text Data Using Topic Models

7	9.64	1.2089e-03	2.177e+02	15.000	0
8	10.68	1.4420e-03	2.160e+02	15.000	0
9	10.48	9.7858e-04	2.149e+02	15.000	0
10	9.58	1.0064e-03	2.137e+02	15.000	0
11	12.01	6.9515e-04	2.129e+02	7.029	18
12	13.82	3.7253e-02	1.756e+02	5.196	13
13	10.80	1.2478e-02	1.648e+02	4.611	10
14	11.48	4.7858e-03	1.608e+02	4.369	8
15	10.89	2.6832e-03	1.587e+02	4.204	7
16	11.40	2.2533e-03	1.569e+02	4.052	7
17	11.75	1.4209e-03	1.557e+02	3.942	7
18	10.65	1.4675e-03	1.546e+02	3.832	7
19	12.18	1.0584e-03	1.538e+02	3.750	6
20	11.65	1.4004e-03	1.527e+02	3.671	6
Iteration	Time per	Relative	Training	Topic	Topic
	iteration	change in	perplexity	concentration	concentration
	(seconds)	log(L)			iterations
21	10.41	8.1743e-04	1.521e+02	3.602	6
22	11.94	1.0635e-03	1.512e+02	3.521	6
23	12.73	1.1552e-03	1.504e+02	3.446	6
24	11.95	1.1662e-03	1.495e+02	3.382	6
25	11.28	8.5580e-04	1.489e+02	3.339	5
26	11.73	7.5594e-04	1.483e+02	3.294	5
27	11.62	4.9627e-04	1.479e+02	3.232	6
28	11.62	9.2081e-04	1.473e+02	3.190	5
29	10.54	9.3369e-04	1.466e+02	3.144	5
30	10.72	8.4445e-04	1.460e+02	3.104	5
31	11.05	5.4654e-04	1.456e+02	3.078	4
32	12.38	4.2853e-04	1.452e+02	3.030	5
33	14.09	9.9635e-04	1.445e+02	2.995	5
34	14.46	5.2839e-04	1.442e+02	2.970	4
35	14.34	7.1177e-04	1.436e+02	2.924	5
36	15.88	5.9159e-04	1.432e+02	2.900	4
37	13.42	5.4132e-04	1.428e+02	2.866	5
38	11.22	7.0649e-04	1.423e+02	2.833	5
39	10.90	5.2818e-04	1.420e+02	2.819	3
40	10.29	1.1893e-04	1.419e+02	2.781	5
Iteration	Time per	Relative	Training	Topic	Topic
	iteration	change in	perplexity	concentration	concentration
	(seconds)	log(L)			iterations

1-35

1 fext Analytics Toolbox Examples

41	11.52	5.5626e-04	1.415e+02	2.757
42	11.17	5.0465e-04	1.411e+02	2.728
43	10.85	5.1489e-04	1.408e+02	2.705
44	10.67	3.0931e-04	1.406e+02	2.666
45	11.02	3.7067e-04	1.403e+02	2.635
46	9.58	3.5919e-04	1.401e+02	2.624
47	9.56	8.5336e-05	1.400e+02	2.601

AWy bhbhp

Visualize Topics Using Word Clouds

You can use word clouds to easily view the words with the highest probabilities in each
topic. Visualize the first four topics using word clouds.

figure;

for topicIdx = 1:4
subplot(2,2,topicIdx)
wordcloud(mdl, topicIdx);
title("Topic: " + topicIdx)

end

1-36

Analyze Text Data Using Topic Models

Topic: 1 Toph:z
e d- I”IH: ooal camgial - b Od'"]
'.... b,r,:edﬁbrﬂ o oA scluthwest" &
i Eliw E‘E‘k siraam fva = tWD
g hlghwahw vallei Lc?ﬁn : == four West m#tneagt
F naadi * harmgion S0l lar
gmund roa rasid ﬁfz;' == ol ot mlle n%”h
';mt bgﬁn’;waterfﬂ@ i == e nn.r-thwest ast approxim —
COVElers northeast ¥,
= rnarket |nclud : s =t k;vg,'clli’jum. R
Topic: 3 Topic: 4
ki *;...1.;;5:1';17,.1# o ,.h_,'rmmhw ixi
. Cilizen s0Ul ra i
ped e sever
drop wind chill 141 il perslst e
l""‘l.-’EI|L.Iar":-'l“'lndEEII.JrIZ:nn : gCST_ qulrllﬂc == moanitar
i Elrdm DbSEW'”dlﬁl""' 2 r;:mdrought ra:rﬂl.l.-l.
wx. locat SEVEF hﬂurm*l « .h|.-|- Extre mosor dry ul:\cl;é o
‘Weather fewrsver - septemb, Gond.l.t;f‘“_"“_
e SR Bl *42. continu’

View Mixtures of Topics in Documents

Use transform to transform the documents into vectors of topic probabilities.

newDocument = tokenizedDocument("A tree is downed outside Apple Hill Drive, Natick");
topicMixture = transform(mdl,newDocument);
figure

bar(topicMixture)

xlabel("Topic Index")
ylabel("Probabilitiy")

title("Document Topic Probabilities")

1-37

1 fext Analytics Toolbox Examples

Document Topic Probabilities
0.12

0.1

0.08

0.06

Probabilitiy

0.04

0.02

0 10 20 30 40 50 60
Topic Index

Visualize multiple topic mixtures using stacked bar charts. Visualize the topic mixtures of
the first 10 input documents.

figure

topicMixtures = transform(mdl,documents(1:10));
barh(topicMixtures(1:10,:), 'stacked")

xlim([0 171)

title("Topic Mixtures")

xlabel("Topic Probability")

ylabel("Document™")

1-38

Analyze Text Data Using Topic Models

Topic Mixture

Document

0 01 02 03 04 05 06 07 08 09 1
Topic Probability

Example Preprocessing Function

The function preprocessWeatherNarratives, performs the following steps in order:

1 Erase punctuation using erasePunctuation.

2 Convert the text data to lowercase using lower.
3 Tokenize the text using tokenizedDocument.
4

Remove a list of stop words (such as "and", "of", and "the") using removeWords and
stopWords.

Remove words with 2 or fewer characters using removeShortWords.
Remove words with 15 or more characters using removelLongWords.

1-39

1 fext Analytics Toolbox Examples

7 Normalize the words using the Porter stemmer using normalizeWords.

function [documents] = preprocessWeatherNarratives(textData)
% Erase punctuation.
cleanTextData = erasePunctuation(textData);

% Convert the text data to lowercase.
cleanTextData = lower(cleanTextData);

% Tokenize the text.
documents = tokenizedDocument(cleanTextData);

% Remove a list of stop words.
documents = removeWords(documents,stopWords);

% Remove words with 2 or fewer characters, and words with 15 or greater
% characters.

documents = removeShortWords(documents,2);

documents = removelLongWords(documents,15);

% Normalize the words using the Porter stemmer.
documents = normalizeWords(documents);
end

See Also
bagOfWords | fitlda | ldaModel | tokenizedDocument | wordcloud

Related Examples

. “Choose Number of Topics for LDA Model” on page 1-41

. “Compare LDA Solvers” on page 1-46

. “Analyze Text Data Using Multiword Phrases” on page 1-51
. “Classify Text Data Using Deep Learning” on page 1-68

1-40

Choose Number of Topics for LDA Model

Choose Number of Topics for LDA Model

This example shows how to decide on a suitable number of topics for a latent Dirichlet
allocation (LDA) model.

To decide on a suitable number of topics, you can compare the goodness-of-fit of LDA
models fit with varying numbers of topics. You can evaluate the goodness-of-fit of an LDA
model by calculating the perplexity of a held-out set of documents. The perplexity
indicates how well the model describes a set of documents. A lower perplexity suggests a
better fit.

To reproduce the results of this example, set rng to 'default’.
rng('default')
Extract and Preprocess Text Data

Load the example data. The file weatherReports. csv contains weather reports,
including a text description and categorical labels for each event. Extract the text data
from the field event narrative.

filename = "weatherReports.csv";
data = readtable(filename, 'TextType', 'string');
textData = data.event narrative;

Tokenize and preprocess the text data using the function
preprocessWeatherNarratives which is listed at the end of this example.

documents

= preprocessWeatherNarratives(textData);
documents(1:5)

ans =
5x1 tokenizedDocument:

(1,1) 5 tokens: larg tree down plantersvil nettleton

(2,1) 18 tokens: two feet deep stand water develop street winthrop univers campu inch
(3,1) 9 tokens: nw columbia relai report tree blown down tom hall

(4,1) 10 tokens: media report two tree blown down i40 old fort area

(5,1) 0O tokens:

Set aside 10% of the documents at random for validation.

numDocuments = numel(documents);
cvp = cvpartition(numDocuments, 'HoldOut',0.1);

1-41

1 fext Analytics Toolbox Examples

1-42

documentsTrain = documents(cvp.training);
documentsValidation = documents(cvp.test);

Create a bag-of-words model from the training documents. Remove the words that do not
appear more than two times in total. Remove any documents containing no words.

bag = bag0fWords(documentsTrain);
bag = removelInfrequentWords(bag,2);
bag = removeEmptyDocuments(bag);

Choose Number of Topics

The goal is to choose a number of topics that mini the perplexity is lowest compared to
other numbers of topics. This is not the only consideration: models fit with larger
numbers of topics may take longer to converge. To see the effects of the tradeoff,
calculate both goodness-of-fit and the fitting time. If the optimal number of topics is high,
then you might want to choose a lower value to speed up the fitting process.

Fit some LDA models for a range of values for the number of topics. Compare the fitting
time and the perplexity of each model on the held-out set of test documents. The
perplexity is the second output to the Logp function. To obtain the second ouput without
assigning the first output to anything, use the ~ symbol. The fitting time is the
TimeSinceStart value for the last iteration. This value is in the History struct of the
FitInfo property of the LDA model.

For a quicker fit, specify 'Solver' to be 'savb'. To train for more passes of the data,
specify 'DataPassLimit' to be 10. To suppress verbose output, set 'Verbose' to 0.
This may take a few minutes to run.

numTopicsRange = [5 10 15 20 40];
for i = l:numel(numTopicsRange)
numTopics = numTopicsRange(1i);

mdl = fitlda(bag,numTopics,
'Solver', 'savb', .
'DataPassLimit',10,...
'Verbose',0);

[~,validationPerplexity(i)] = logp(mdl,documentsValidation);
timeElapsed(i) = mdl.FitInfo.History.TimeSinceStart(end);
end

Show the perplexity and elapsed time for each number of topics in a plot. Plot the
perplexity on the left axis and the time elapsed on the right axis.

Choose Number of Topics for LDA Model

figure

yyaxis left
plot(numTopicsRange,validationPerplexity, '+-"')
ylabel("Validation Perplexity")

yyaxis right
plot(numTopicsRange, timeElapsed, 'o-")
ylabel("Time Elapsed (s)")

legend(["Validation Perplexity" "Time Elapsed (s)"], 'Location', 'southeast')

xLlabel("Number of Topics")

OO0 T T T T T T a0
i 180
490 -
e 170
.l"/f-
il -~ 160 —
1 J'x_,f’ --_______,.F*"' o E
@ ~ -
T 470 i " ey &
5 _— v
-~ Jab]
E E 4U .E
= =
< 460
1 30
450
—+— Validation Perplexity | | <Y
—=—Time Elapsed (s)
440 : : : 10
25 30 35 40

Mumber of Topics

The plot suggests that fitting a model with 10-20 topics may be a good choice. The
perplexity is low compared with the models with different numbers of topics. With this

1-43

1 fext Analytics Toolbox Examples

1-44

solver, the elapsed time for this many topics is also reasonable. With different solvers, you
may find that increasing the number of topics can lead to a better fit, but fitting the model
takes longer to converge.

Example Preprocessing Function
The function preprocessWeatherNarratives, performs the following steps in order:

Erase punctuation using erasePunctuation.
Convert the text data to lowercase using Lower.
Tokenize the text using tokenizedDocument.

D W N R

Remove a list of stop words (such as "and", "of", and "the") using removeWords and
stopWords.

Remove words with 2 or fewer characters using removeShortWords.
Remove words with 15 or more characters using removelLongWords.
Normalize the words using the Porter stemmer using normalizeWords.

function [documents] = preprocessWeatherNarratives(textData)
% Erase punctuation.
cleanTextData = erasePunctuation(textData);

% Convert the text data to lowercase.
cleanTextData = lower(cleanTextData);

% Tokenize the text.
documents = tokenizedDocument(cleanTextData);

% Remove a list of stop words.
documents = removeWords(documents,stopWords);

% Remove words with 2 or fewer characters, and words with 15 or greater
% characters.

documents = removeShortWords(documents,2);

documents = removelLongWords(documents,15);

% Normalize the words using the Porter stemmer.

See Also

documents = normalizeWords(documents);
end

See Also
bagO0fWords | fitlda | ldaModel | Logp | tokenizedDocument | wordcloud

Related Examples

. “Analyze Text Data Using Topic Models” on page 1-32
. “Compare LDA Solvers” on page 1-46

1-45

1 fext Analytics Toolbox Examples

Compare LDA Solvers

1-46

This example shows how to compare latent Dirichlet allocation (LDA) solvers by
comparing the goodness of fit and the time taken to fit the model.

To reproduce the results of this example, set rng to 'default’.
rng('default")

Extract and Preprocess Text Data

Load the example data. The file weatherReports. csv contains weather reports,
including a text description and categorical labels for each event. Extract the text data
from the field event narrative.

filename = "weatherReports.csv";
data = readtable(filename, 'TextType', 'string');
textData = data.event narrative;

Tokenize and preprocess the text data using the function
preprocessWeatherNarratives which is listed at the end of this example.

documents = preprocessWeatherNarratives(textData);
Set aside 10% of the documents at random for validation.
numbDocuments = numel(documents);

cvp = cvpartition(numDocuments, 'HoldOut',0.1);

documentsTrain = documents(cvp.training);
documentsValidation = documents(cvp.test);

Create a bag-of-words model from the training documents. Remove the words that do not
appear more than two times in total. Remove any documents containing no words.

bag = bag0fWords(documentsTrain);
bag = removelnfrequentWords(bag,2);
bag = removeEmptyDocuments(bag);

Fit and Compare Models

For each of the LDA solvers, fit an LDA model with 60 topics. To distinguish the solvers
when plotting the results on the same axes, specify different line properties for each
solver.

Compare LDA Solvers

numTopics = 60;
solvers = ["cgs" "avb" "cvb0" "savb"];
'Linespecs = [II+_II II*_II IIX_II IIO_II];

For the validation data, create a bag-of-words model from the validation documents.

validationData = bagOfWords(documentsValidation);

For each of the LDA solvers, fit the model, set the initial topic concentration to 1, and
specify to not fit the topic concentration parameter. Using the data in the FitInfo
property of the fitted LDA models, plot the validation perplexity and the time elapsed. Plot
the time elapsed in a logarithmic scale. This can take up to an hour to run.

The code for removing NaNs is necessary because of a quirk of the stochastic solver
"savb'. For this solver, the function evaluates the validation perplexity after each pass of
the data. The function does not evaluate the validation perplexity for each iteration (mini-
batch) and reports NaNs in the FitInfo property. To plot the validation perplexity,
remove the NaNs from the reported values.

figure

for i = 1l:numel(solvers)
solver = solvers(i);
lineSpec = lineSpecs(i);

mdl = fitlda(bag,numTopics,
'Solver',solver,
'InitialTopicConcentration',1,
'FitTopicConcentration', false,
'ValidationData',validationData,
'Verbose',0);

history = mdl.FitInfo.History;

timeElapsed = history.TimeSinceStart;
validationPerplexity = history.ValidationPerplexity;

% Remove NalNs.

idx = isnan(validationPerplexity);
timeElapsed(idx) = [];
validationPerplexity(idx) = [];

semilogx(timeElapsed,validationPerplexity, lineSpec)

hold on
end

1-47

1 7ext Analytics Toolbox Examples

hold off

xlabel("Time Elapsed (s)")
ylabel("Validation Perplexity")
legend(solvers)

550 —————

—t+—cgs
500 —4%—avb |

cvb0
—=—savh

Walidation Perplexity

1501 O T g 1

100 —
10° 10! 102 10° 104

Time Elapsed (s)

For the stochastic solver "savb", the function, by default, passes through the training
data once. To process more passes of the data, set 'DataPassLimit’' to a larger value
(the default value is 1). For the batch solvers ("cgs", "avb", and "cvb0"), to reduce the
number of iterations used to fit the models, set the 'IterationLimit' option to a lower
value (the default value is 100).

1-48

Compare LDA Solvers

A lower validation perplexity suggests a better fit. Usually, the solvers "savb" and "cgs"
converge quickly to a good fit. The solver "cvb0" might converge to a better fit, but it
can take much longer to converge.

For the FitInfo property, the fitlda function estimates the validation perplexity from
the document probabilities at the maximum likelihood estimates of the per-document
topic probabilities. This is usually quicker to compute, but can be less accurate than other
methods. To calculate more accurate values, calculate the validation perplexity using the
logp function. This will take longer to run. For an example showing how to compute the
perplexity using logp, see .

Example Preprocessing Function
The function preprocessWeatherNarratives performs the following steps in order:

Erase punctuation using erasePunctuation.
Convert the text data to lowercase using Lower.
Tokenize the text using tokenizedDocument.

A W N R

Remove a list of stop words (such as "and", "of", and "the") using removeWords and
stopWords.

Remove words with 2 or fewer characters using removeShortWords.
Remove words with 15 or more characters using removelLongWords.
7 Normalize the words with the Porter stemmer using normalizeWords.

function [documents] = preprocessWeatherNarratives(textData)
% Erase punctuation.
cleanTextData = erasePunctuation(textData);

% Convert the text data to lowercase.
cleanTextData = lower(cleanTextData);

% Tokenize the text.
documents = tokenizedDocument(cleanTextData);

% Remove a list of stop words.
documents = removeWords(documents,stopWords);

% Remove words with 2 or fewer characters, and words with 15 or greater
% characters.

documents = removeShortWords (documents,?2);

documents = removelLongWords(documents,15);

1-49

1 fext Analytics Toolbox Examples

% Normalize the words using the Porter stemmer.
documents = normalizeWords(documents);
end

See Also
bagO0fWords | fitlda | ldaModel | Logp | tokenizedDocument | wordcloud

Related Examples

. “Analyze Text Data Using Topic Models” on page 1-32
. “Choose Number of Topics for LDA Model” on page 1-41

Analyze Text Data Using Multiword Phrases

Analyze Text Data Using Multiword Phrases

This example shows how to analyze text using n-gram frequency counts.

N-grams

An n-gram is a tuple of # consecutive words. For example, a bigram (the case when
n=12)isqa pair of consecutive words such as "heavy rainfall". A unigram (the case when

n=lyisa single word. A bag-of-n-grams model records the number of times that
different n-grams appear in document collections.

Using a bag-of-n-grams model, you can retain more information on word ordering in the
original text data. For example, a bag-of-n-grams model is better suited for capturing
short phrases which appear in the text, such as "heavy rainfall" and "thunderstorm
winds".

To create a bag-of-n-grams model, use bag0fNgrams. You can input bagOfNgrams
objects into other Text Analytics Toolbox functions such as wordcloud and fitlda.

Load and Extract Text Data
To reproduce the results of this example, set rng to 'default’.
rng('default')

Load the example data. The file weatherReports. csv contains weather reports,
including a text description and categorical labels for each event. Remove the rows with
empty reports.

filename = "weatherReports.csv";
data = readtable(filename, 'TextType', 'String');
idx = strlength(data.event narrative) == 0;

data(idx,:) = [1];
Extract the text data from the table and view the first few reports.

textData

= data.event narrative;
textData(1l:5)

ans = 5x1 string array
"Large tree down between Plantersville and Nettleton."
"One to two feet of deep standing water developed on a street on the Winthrop Unive

1-51

1 fext Analytics Toolbox Examples

"NWS Columbia relayed a report of trees blown down along Tom Hall St."
"Media reported two trees blown down along I-40 in the 0ld Fort area."
"A few tree limbs greater than 6 inches down on HWY 18 in Roseland."

Prepare Text Data for Analysis

Create a function which tokenizes and preprocesses the text data so it can be used for
analysis. The function preprocessWeatherNarratives listed at the end of the
example, performs the following steps:

Erase punctuation using erasePunctuation.

Convert the text data to lowercase using Llower.

Tokenize the text using tokenizedDocument.

A W N M

Remove a list of stop words (such as "and", "of", and "the") using removeWords and
stopWords.

Remove words with 2 or fewer characters using removeShortWords.
Remove words with 15 or more characters using removelLongWords.
7 Normalize the words using the Porter stemmer using normalizeWords.

Use the example preprocessing function preprocessWeatherNarratives to prepare
the text data.

documents

= preprocessWeatherNarratives(textData);
documents(1:5)

ans =
5x1 tokenizedDocument:

(1,1) 5 tokens: larg tree down plantersvil nettleton

(2,1) 18 tokens: two feet deep stand water develop street winthrop univers campu inch
(3,1) 9 tokens: nw columbia relai report tree blown down tom hall

(4,1) 10 tokens: media report two tree blown down i40 old fort area

(5,1) 8 tokens: few tree limb greater inch down hwy roseland

Create Word Cloud of Bigrams

Create a word cloud of bigrams by first creating a bag-of-n-grams model using
bag0fNgrams, and then inputting the model to wordcloud.

To count the n-grams of length 2 (bigrams), use bag0fNgrams with the default options.

1-52

Analyze Text Data Using Multiword Phrases

bag = bag0fNgrams(documents)

bag =

bag0OfNgrams with properties:

Counts:
Vocabulary:
Ngrams:
NgramLengths:
NumNgrams:
NumDocuments:

Visualize the bag-of-n-grams model using a word cloud.

figure
wordcloud(bag);

[28138x114788 double]
[1x17815 string]
[114788x2 string]

2

114788

28138

title("Weather Reports: Preprocessed Bigrams")

1-53

1 fext Analytics Toolbox Examples

1 o meaar

1-54

wind estm inch rain
snawfal amount |arg tree

Weather Reports: Preprocessed Bigrams

lipl traa
inch diamet m”
dwrn NEAr "jzw enforc measur inch

enforc regort peakgust tree blown 5n|:-wfal tcul:al .

heavi rainfal R

v SEVET tl’EE tree d Own near intersect

flood stage sustain wind

man negnar

e TP"Size halil power line.iiz:

s foad hpgh water

___flash flood b I OWn d OWﬂ train spotter

knock down repnrt tree’s

""“:“l;‘ tree power WI nd snow fell . ;
all size i i esm ITI[J
u heavi rain
IEI'IﬂII'IEh gUSt kn :Lu’ﬂ

power pele rain fell tree [imb

tree rEpDr‘t report Inchdarnag repart

feray ez

hail report

t m ph spgt{;r reportumdue

counti road | vt
ceanhdilfellranart down

w25 aimesa INCN SNOW . pubic report
thunderstorm wmd p%akgz"ruﬁ.a

Ch measu Sress S
omaiy manag e[20 12

o oo

quarter size g

sever fhundarsionm
thundarstarm praduc

Fit Topic Model to Bag-of-N-Grams

A Latent Dirichlet Allocation (LDA) model is a topic model which discovers underlying
topics in a collection of documents and infers the word probabilities in topics.

Create an LDA topic model with 10 topics using fitlda. The function fits an LDA model
by treating the n-grams as single words.

mdl = fitlda(bag,10);

Initial topic assignments sampled in 1.68128 seconds.

| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |

Analyze Text Data Using Multiword Phrases

	(seconds)	log(L)			iterations
0	6.49		1.919e+04	2.500	0
1	8.56	7.0045e-02	1.006e+04	2.500	0
2	8.63	2.2377e-03	9.860e+03	2.500	0
3 9.68	3.9570e-04	9.824e+03	2.500	0	
4	9.71	4.1796e-04	9.786e+03	2.500	0
5	9.64	1.4536e-05	9.785e+03	2.500	0

Visualize the first four topics as word clouds.

figure
for i = 1:4

end

subplot(2,2,1)
wordcloud(mdl,1i);
title("LDA Topic " + i)

1-55

1 fext Analytics Toolbox Examples

LDA Topic 1

knot mea it
i) inch .Sﬂo'l.l.-ca:u ah s1adon
i GLIST 1M ph'-" - -ﬂ-

warn o £ e

rch maear

wind gust:
..I.. gust knotSm ‘.'f:,.'.c.,

measur inch; .

oy s

LDA Topic 3

Fundasirm J'\I:I\.IJL
-:n'.rJ fcla o]

waler Feal road ,b'.-a

numer foad rrmr mad

due flood tood water -
prichehon |._'| 56 e raan caus
§|||I s

s flash flood=st=t
toot e IEEVI FAIA TS e
sounti reashigh water =

raad flood ..o s

Eilone poUNnt road, ol

LDA Topic 2

.'-E el ancwial 1odad .
: ichi e raport ine X
;Anchsnnw:"
oo B enow fel e

it Fich
SR R ok r R s pen, r

SNCIW Meaes
st mineh

LDA Topi:: 4

wared o
st AT W

nier reporl Snap upmul

wu dAMAG OCCUT &

|"C"-...]I ag p ROl o condin,
DONsET DaTie

L toLich 'm-w

= gihC g

._ :.L-mh . TL'IL'IT Lﬁc.ﬁ' I-_ng oI bt iy

. lra:t fall free snap

0

ficad slage M iniea mobil home justsc Iil_nl
e Hdad oSt = e WiNd astim s
N RRLITRY. dreught. el

1 l:l-CI'II-\.Ig span

The word clouds highlight commonly cooccuring bigrams in the LDA topics. The function
plots the bigrams with sizes according to their probabilities for the specified LDA topics.

Analyze Text Using Longer Phrases

To analyze text using longer phrases, specify the 'NGramLengths' option in
bagOfNgrams to be a larger value.

When working with longer phrases, it can be useful to keep stop words in the model. For
example, to detect the phrase "is not happy", keep the stop words "is" and "not" in the
model.

Preprocess the text. Erase the punctuation using erasePunctuation, and tokenize
using tokenizedDocument.

1-56

Analyze Text Data Using Multiword Phrases

cleanTextData = erasePunctuation(textData);
documents = tokenizedDocument(cleanTextData);

To count the n-grams of length 3 (trigrams), use bag0fNgrams and specify
'"NGramLengths' to be 3.

bag = bag0fNgrams(documents, 'NGramLengths',3);

Visualize the bag-of-n-grams model using a word cloud. The word cloud of trigrams better
shows the context of the individual words.

figure
wordcloud(bag);
title("Weather Reports: Trigrams")

Weather Reports: Trigrams

[P ——
damage was raparted _ SNOW Was reporied
due toflooding A large frea T e

guit wats s d quarier size ha tr‘ee was blﬂwn ""Ii.ndE“Ur‘*':l
peak gust of ha|| was reporte‘d Hown down acas

~ an inch was raparted in

k=

Mo damage was

o i ghaet wit

and power linesinches of rain_ ofthe county
blown down on A {ree Was trees were blown 5*0 e

Atrained spotter an inch of A0 mph or

vmmesenes \Ware blown downarees

wndget wNEAr the iﬂt_EFSECtiDﬂ of snow was """ was measured a‘tugmn

_=sninches of snow=::r
ofsnowlel across the county =z

Tﬂu;'ﬁu'uuuﬁ'ldnwn iﬂ the . e the
inches across the & wind gust Wi d gust Df trees and power

S]:r'fllnq Qusts of size hail was ball e ha blown down in e WyDOT senaor

sipa izl

e i s t€ INtersection of dosed dve o

snow fell across .
nes wers e WS repgrted at pﬂ"-:ﬁu'?ﬁ;gﬁrgﬂ
with 2 peak WAS blown down e

resas Ilowimn down

—=rwere reported down
Walned spotier reported sustained winds of

ks .:;-I.:\f":-;{;::v::&.-. duee 1o thu nder stonm

WL DS W

e Thal e 500 T W s e b s dawn

1-57

1 fext Analytics Toolbox Examples

1-58

View the top 10 trigrams and their frequency counts using topkngrams.
tbl = topkngrams(bag, 10)
tbl=10x3 table

Ngram Count NgramLength
"inches" "of" "snow" 2075 3
"across" "the" "county" 1318 3
"were" "blown" "down" 1189 3
"wind" "gust" "of" 934 3
"A" "tree" "was" 860 3
"the" "intersection" "of" 812 3
"inches" "of" "rain" 739 3
"hail" "was" "reported" 648 3
"was" "blown" "down" 638 3
"and" "power" "lines" 631 3

Example Preprocessing Function
The function preprocessWeatherNarratives performs the following steps:

Erase punctuation using erasePunctuation.
Convert the text data to lowercase using lower.
Tokenize the text using tokenizedDocument.

Remove a list of stop words (such as "and", "of", and "the") using removeWords and
stopWords.

Remove words with 2 or fewer characters using removeShortWords.

A W N

Remove words with 15 or more characters using removelLongWords.
Normalize the words using the Porter stemmer using normalizeWords.
function documents = preprocessWeatherNarratives(textData)

% Erase punctuation.
cleanTextData = erasePunctuation(textData);

% Convert the text data to lowercase.
cleanTextData = lower(cleanTextData);

% Tokenize the text.
documents = tokenizedDocument(cleanTextData);

See Also

% Remove a list of stop words.
documents = removeWords(documents,stopWords);

% Remove words with 2 or fewer characters, and words with 15 or greater
% characters.

documents
documents

removeShortWords (documents,?2);
removeLongWords (documents,15);

% Normalize the words using the Porter stemmer.
documents = normalizeWords(documents);

end

See Also
bagOfNgrams | fitlda | ldaModel | tokenizedDocument | topkngrams | wordcloud

Related Examples

. “Analyze Text Data Using Topic Models” on page 1-32

. “Visualize Text Data Using Word Clouds” on page 1-26
. “Classify Text Data Using Deep Learning” on page 1-68

1-59

1 fext Analytics Toolbox Examples

Visualize Word Embeddings Using Text Scatter Plots

1-60

This example shows how to visualize word embeddings using 2-D and 3-D t-SNE and text
scatter plots.

Word embeddings, map words in a vocabulary to real vectors. The vectors attempt to
capture the semantics of the words, so that similar words have similar vectors. Some
embeddings also capture relationships between words like "king is to queen as man is to

woman". In vector form, this relationship is Kifg — man + woman = gueen
To reproduce the results in this example, set rng to 'default’.

rng(‘'default')

Read the example word embedding. This model was derived by analyzing text from
Wikipedia.

filename = "exampleWordEmbedding.vec";
emb = readWordEmbedding(filename)

emb =
wordEmbedding with properties:

Dimension: 50
Vocabulary: [1x9999 string]

Explore the word embedding using word2vec and vec2word. Convert the words king,
man, and woman to vectors using word2vec.

king = word2vec(emb, "king");
man = word2vec(emb, "man");
woman = word2vec(emb, "woman");

Compute the vector given by king - man + woman. This vector encapsulates the
semantic meaning of the word king, without the semantics of the word man, and also
includes the semantics of the word woman.

vec = king - man + woman

vec 1x50 single row vector

-0.9633 0.2275 0.9614 2.1593 -1.0541 -4.7783 -2.5908 -1.0410

Visualize Word Embeddings Using Text Scatter Plots

Find the closest words in the embedding to vec using vec2word.
word = vec2word(emb,vec)

word =
“queen”

Create 2-D Text Scatter Plot

Visualize the word embedding by creating a 2-D text scatter plot using tsne and
textscatter.

Convert the words to vectors using word2vec. V is a matrix of word vectors of length 50.

words = emb.Vocabulary;
V = word2vec(emb,words);
size(V)

ans = 1x2

9999 50

Embed the word vectors in two-dimensional space using tsne. This function may take a
few minutes to run. If you want to display the convergence information, then you can set
the 'Verbose' name-value pair to 1.

XY = tsne(V);

Plot the words at the coordinates specified by XY in a 2-D text scatter plot. For readability,
textscatter, by default, does not display all of the input words and displays markers
instead.

figure

textscatter(XY,words)
title("Word Embedding t-SNE Plot")

1-61

1 fext Analytics Toolbox Examples

1-62

Word Embedding t-SNE Plot

80 : : , ,
60 b comnstruments]
music
born SUPET o e rsio
40 di lisa L bhone :
i
san john hect workiritten ist bugs
207 french ross g @Mibchoolmodel ame 1
reman o Loute
unitedford black B knnw:'gﬂum kind T block
o indigkET‘%‘“"W”%Mieﬁanpmch&é’ﬁemﬂ“me social
ritis ; :
g Plant first NIGN - interest _
50 b : side security |
? team mad&upport get solice
goal fde city home against
- ~julyform law]
=l seg engine o
it businessStateeedom
War foundation
60 officer &
_ED t L 1 1 i i i I
=100 -80 60 40 =20 0 20 40 60

Zoom in on a section of the plot.

xlim([-28 -20
ylim([-51 -41

1)
1)

80

Visualize Word Embeddings Using Text Scatter Plots

Word Embedding t-SNE Plot

—-4'] T T T T
42 ! islands T
coast
A3r J island 1
IEEE') - W
44 " harbor 1
] fer
45 | @ harbour -
offshore
port diving
46 T T, b
cargo
Arr) shipyard |
marine craft
=48 I nautical ,]
Gruise
49t Boat 1
voyage
50 F abg
sinking shlp,
_5.1 i i i i i i 1
-28 27 -26 -25 =24 =23 22 -21 =20

Create 3-D Text Scatter Plot

Visualize the word embedding by creating a 3-D text scatter plot using tsne and

textscatter.

Convert the words to vectors using word2vec. V is a matrix of word vectors of length 50.

words =

emb.Vocabulary;

V = word2vec(emb,words);

size(V)

ans = 1Ix2

9999

50

1-63

1 fext Analytics Toolbox Examples

Embed the word vectors in a three-dimensional space using tsne by specifying the
number of dimensions to be three. This function may take a few minutes to run. If you
want to display the convergence information, then you can set the 'Verbose' name-

value pair to 1.

XYZ = tsne(V,
"NumDimensions'

Plot the words at the coordinates specified by XYZ in a 3-D text scatter plot.

figure

»3);

ts = textscatter3(XYZ,words);
title("3-D Word Embedding t-SNE Plot")

3-D Word Embedding t-SNE Plot

50 4

1-64

i L,E_?adu,"' article
schogpublished
", vorikoouRx
& 3@%%%55? imary

Visualize Word Embeddings Using Text Scatter Plots

Zoom in on a section of the plot.

xlim([-4.2 6.5])
ylim([-2.72 7.99])
zlim([16.10 26.81])

3-D Word Embedding t-SNE Plot

26
24 imagery background
22 . .
depitted vewmgappears
20 disflay seen
iatdr
18

Perform Cluster Analysis

Convert the words to vectors using word2vec. V is a matrix of word vectors of length 50.
words = emb.Vocabulary;

V = word2vec(emb,words);
size(V)

1-65

1 fext Analytics Toolbox Examples

ans = 1Ix2

9999 50

Discover 25 clusters using kmeans.
cidx = kmeans(V,25, 'dist', 'sgeuclidean');

Visualize the clusters in a text scatter plot using the 2-D t-SNE data coordinates
calculated earlier.

figure

textscatter(XY,words,
'ColorData',categorical(cidx));

title("Word Embedding t-SNE Plot")

1-66

See Also

Word Embedding t-SNE Plot

Eﬂ T T T T
il l
40 2
- g
201 ﬁch k.
o L™
ol gl _
ilﬁj'.:'l
=20 r g
40 - 1
60 .
—\Eﬂ 1 1 1 1 1 1 1 1
=100 -a0 60 =40 =20 O 20 40 60 80
See Also

readWordEmbedding | textscatter | textscatter3 |word2vec | wordEmbedding

Related Examples

. “Extract Text Data from Files” on page 1-2

. “Prepare Text Data for Analysis” on page 1-16

. “Visualize Text Data Using Word Clouds” on page 1-26
. “Classify Text Data Using Deep Learning” on page 1-68

1-67

1 fext Analytics Toolbox Examples

Classify Text Data Using Deep Learning

1-68

This example shows how to classify text descriptions of weather reports using a deep
learning long short-term memory (LSTM) network.

Text data is naturally sequential. A piece of text is a sequence of words, which might have
dependencies between them. To learn and use long-term dependencies to classify
sequence data, you can use an LSTM neural network. An LSTM network is a type of
recurrent neural network (RNN) that can learn long-term dependencies between time
steps of sequence data.

To use an LSTM network for text data, you must first convert the text data into numeric
sequences. You can achieve this using word embeddings. Word embeddings map words in
a vocabulary to numeric vectors. These embeddings can capture semantic details of the
words so that similar words have similar vectors. They also model relationships between
words through vector arithmetic. For example, the relationship "king is to queen as man
is to woman" is described by the equation king - man + woman = queen.

This example shows how to train a word-embedding to convert text data to sequences of
numeric vectors and train an LSTM network for text classification. There are four steps in
training and using the LSTM network:

* Import and preprocess the data.

* Convert the words to numeric vectors by training a word embedding.

* Create and train an LSTM network using the sequences of word vectors.

* Classify new text data using the trained LSTM network.

Import Data

Import the weather reports data. This data contains labeled textual descriptions of
weather events. To import the text data as string arrays, specify the text type to be
'string’.

filename = "weatherReports.csv";
data = readtable(filename, 'TextType', 'string');
head(data)

ans=8x16 table
Time event id state event type

d:

Classify Text Data Using Deep Learning

22-Jul-2016 16:10:00 6.4433e+05 "MISSISSIPPI" "Thunderstorm Wind"
15-Jul-2016 17:15:00 6.5182e+05 "SOUTH CAROLINA" "Heavy Rain"
15-Jul-2016 17:25:00 6.5183e+05 "SOUTH CAROLINA" "Thunderstorm Wind"
16-Jul-2016 12:46:00 6.5183e+05 "NORTH CAROLINA" "Thunderstorm Wind"
15-Jul-2016 14:28:00 6.4332e+05 "MISSOURI" "Hail"

15-Jul-2016 16:31:00 6.4332e+05 "ARKANSAS™" "Thunderstorm Wind"
15-Jul-2016 16:03:00 6.4343e+05 "TENNESSEE" "Thunderstorm Wind"
15-Jul-2016 17:27:00 6.4344e+05 "TENNESSEE" "Hail"

Remove the rows of the table with empty reports.

idxEmpty = strlength(data.event narrative) == 0;
data(idxEmpty,:) = [1;

Convert the labels in the event type column of the table to categorical.
data.event type = categorical(data.event type);

View the distribution of the classes in the data using a histogram. To make the labels
easier to read, increase the width of the figure.

f = figure;
f.Position(3) = 1.5*f.Position(3);

h = histogram(data.event type);
xlabel("Class")
ylabel("Frequency")
title("Class Distribution")

1-69

1 fext Analytics Toolbox Examples

Class Distribution

L0100 s s s s s B s e O s B B s B B B B B B B
BOOO - T
c 6000 - T
[
=
g
o 4000 - 7
[
=l ﬂT |
pllema! | oomm | iem ||||‘|‘|—|_|4_|_||T|_|JT||||||—'—|||||’_|‘|||||| i e S
GO DO e T E RS R D Rl O HE s E DO E R D OP=ERD O DL E RO DO A EsSdE S
Egmgsg£%5Em_cggfgg;%m%ﬁsgao355;.55525%g;z_gsgaaﬁas
FeyEPLL IosI0EREY s E T s S22 SR E zzzgpecsiEz=E8amag
Nl g @0 Wyl e == WL E oo F =] GRS G
EeamcloSn- 08 L OS5 0ol S5 PE Y _OWESDES B2 «
9 LS Swm=.=1% - mErr@a3iPocsccCc Eam P ERFTET 52
Z m=ga D:mgm 4 0= mmIII_‘”O—'d-‘fUIOCIaJ_BE- === oM =T
< 2580 Togif g2 IP L 0=3z08087 20759 35 £F
£ 03 xg uwho * g8 ¢ £9sgs HE"E 27 FE
E o wo £ £ ggzok g B F =
a e m] @ 2-S5owo b=
= g 4 = Zm@2oc W =
= @ =3 =
= o
< = CEE
L =T
M
==
Class

The classes of the data are imbalanced, with many classes containing few observations.
When the classes are imbalanced in this way, the network might converge to a suboptimal
result. To prevent this problem, remove any classes which appear fewer than ten times.

Get the frequency counts of the classes and their names from the histogram.

classCounts = h.BinCounts;
classNames = h.Categories;

Find the classes containing fewer than ten observations.

idxLowCounts = classCounts < 10;
infrequentClasses = classNames(idxLowCounts)

infrequentClasses = 1x8 cell array
{'Freezing Fog'} {'Hurricane'} {'Lakeshore Flood'} {'Marine Dense Fog'}

Remove these infrequent classes from the data. Use removecats to remove the unused
classes from the categorical data.

Classify Text Data Using Deep Learning

idxInfrequent = ismember(data.event type,infrequentClasses);
data(idxInfrequent,:) = [];
data.event type = removecats(data.event type);

Partition the data into a training partition and a held-out test set. Specify the holdout
percentage to be 10%.

cvp = cvpartition(data.event type, 'Holdout',0.1);
dataTrain = data(training(cvp),:);
dataTest = data(test(cvp),:);

Extract the text data and labels from the partitioned tables.

textDataTrain = dataTrain.event narrative;
textDataTest = dataTest.event narrative;
YTrain = dataTrain.event type;

YTest = dataTest.event type;

Visualize the training text data using a word cloud.
figure

wordcloud(textDataTrain);
title("Training Data")

1-71

1 fext Analytics Toolbox Examples

Training Data

thunderstorm produeed

 Street spotter storm”“
damage Countys.zélm

b ST s River |arge intersection
rain tornado d total Mumerous
hr::ursm ; SS o WI n R estimated
including I t north pDWEI" PR amounts
dmsednear re e Sllme Y T |0"'h:n high
observed hall re p t ng hway
area ©f

rain ih fell up fruse east = feet
_,amumpﬂatgﬁemc y@ggust e

" recorded just i Imes quarter mowes
Sn hr::mes occurred

ﬂoodmgdownmeasured

e s SEVEral e

oaimued C.E!UEEC'
Airport

degre

Preprocess Text Data

Preprocess the training data. Erase the punctuation, convert the text to lowercase, and
then tokenize. Do not stem or remove words, as these steps can lead to a worse word-

embedding fit.
textDataTrain = erasePunctuation(textDataTrain);
textDataTrain = lower(textDataTrain);

documentsTrain = tokenizedDocument (textDataTrain);

View the first few preprocessed training documents.

documentsTrain(1:5)

1-72

Classify Text Data Using Deep Learning

ans =

5x1
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)

tokenizedDocument:

7 tokens: large tree down between plantersville and nettleton

37 tokens: one to two feet of deep standing water developed on a street on the w:
13 tokens: nws columbia relayed a report of trees blown down along tom hall st
13 tokens: media reported two trees blown down along i40 in the old fort area

14 tokens: a few tree limbs greater than 6 inches down on hwy 18 in roseland

Train Word Embedding

Word embeddings map words in a vocabulary to numeric vectors. These embeddings can
capture semantic details of the words so that similar words have similar vectors. They
also model relationships between words through vector arithmetic. For example, the
relationship "king is to queen as man is to woman" is described by the equation king -
man + woman = queen.

Train a word embedding with dimension 100. To train for longer, specify the number of
training epochs to be 50. An epoch corresponds to one pass through the training data. To
suppress the verbose output, set 'Verbose' to 0. This can take several minutes to run.

embeddingDimension = 100;
embeddingEpochs

50;

emb = trainWordEmbedding(documentsTrain,
‘Dimension',embeddingDimension,
"NumEpochs',embeddingEpochs,

'Verbose',0)

emb =

wordEmbedding with properties:

Dimension:

Vocabulary:

100
[1x4996 string]

Convert Document to Sequences

To input the documents into an LSTM network, convert the documents into sequences of
word vectors.

When training the network, the software creates mini-batches of sequences of the same
length by padding, truncating, or splitting the input data. The trainingOptions

1-73

1 fext Analytics Toolbox Examples

function provides options to pad and truncate input sequences, however, these options
are not well suited for sequences of word vectors. Instead, you must pad and truncate the
sequences manually. If you left-pad and truncate the sequences of word vectors, then the
training might improve.

The first conversion step is to choose a target length, and then truncate documents that
are longer than it and left-pad documents that are shorter than it.

For best results, the target length should be short without discarding large amounts of
data. To find a suitable target length, view a histogram of the training document lengths.

documentLengths = doclength(documentsTrain);
figure

histogram(documentLengths)

title("Document Lengths")

xlabel("Length")

ylabel("Number of Documents")

Classify Text Data Using Deep Learning

Mumber of Documents

Document Lengths
SD DD T T T T T T T T T

4500 _

4000 _

3500]

3000

2500

2000

1500

1000

500

0 100 200 300 400 500 600 70O BOO
Length

Most of the training documents have fewer than 75 tokens. Truncate the training
documents to have length 75 using docfun. The anonymous function inputted to docfun
takes string array input and outputs the first 75 elements.

sequencelLength = 75;
documentsTruncatedTrain = docfun(@(words) words(l:min(sequencelLength,end)),documentsTr:

Convert the documents to sequences of word vectors. To convert the training documents
into a cell array of sequences, use the example function doc2sequence, shown at the
end of this example. The columns of each sequence are the word vectors. If you have
Parallel Computing Toolbox™ installed, then the function loops through the documents in
parallel. Otherwise, the function loops through the documents in series and can take a
few minutes to run.

1-75

1 fext Analytics Toolbox Examples

1-76

XTrain = doc2sequence(emb,documentsTruncatedTrain);

Starting parallel pool (parpool) using the 'local' profile ...
connected to 6 workers.

XTrain(1:5)

ans = 1x5 cell array
{100x5 single} {100x37 single} {100x13 single} {100x13 single}

Pad with zeros the documents with fewer tokens than the fixed length. To pad sequences
of word vectors for LSTM networks, you must left-pad the sequences. The sequence
padding option for LSTM networks, by default, right-pads the sequences, so you must do
this manually.

Apply the example function leftPad, shown at the end of this example, to each of the
sequences in XTrain. This function left-pads the sequences with zeros so that they have
the same length.

for i = 1l:numel(XTrain)

XTrain{i} = leftPad(XTrain{i}, sequencelLength);
end
XTrain(1:5)

ans = 1x5 cell array
{100x75 single} {100x75 single} {100x75 single} {100x75 single}

Create and Train LSTM Network

Define the LSTM network architecture. To input sequence data into the network, include
a sequence input layer and set the input size to be the dimension of the word embedding.
Next, include an LSTM layer and specify the output size to be 180. To use the LSTM layer
for a sequence-to-label classification problem, set the output mode to be 'last'. Finally,
add a fully connected layer with the same size as the number of classes, a softmax layer,
and a classification layer.

inputSize = embeddingDimension;

outputSize = 180;
numClasses = numel(categories(YTrain));
layers = [..

sequencelnputlLayer(inputSize)
lstmLayer(outputSize, 'OutputMode', 'last")

{100x14

{100x7!

Classify Text Data Using Deep Learning

fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer]

layers =
5x1 Layer array with layers:

1 v Sequence Input Sequence input with 100 dimensions
2 Y LSTM LSTM with 180 hidden units

3 n Fully Connected 39 fully connected layer

4 b Softmax softmax

5 n Classification Output crossentropyex

Specify the training options. Specify the solver to be 'adam', and the gradient threshold
to be 1. Set the initial learn rate to be 0.01. To monitor the training progress, set the
'Plots' optionto 'training-progress'. To suppress verbose output, set 'Verbose'
to 0.

By default, trainNetwork uses a GPU if one is available (requires Parallel Computing
Toolbox™ and a CUDA® enabled GPU with compute capability 3.0 or higher). Otherwise,
it uses the CPU. To specify the execution environment manually, use the
'ExecutionEnvironment' name-value pair argument of trainingOptions. Training
on a CPU can take significantly longer than training on a GPU.

options = trainingOptions('adam',
'GradientThreshold',1,
'InitiallLearnRate',0.01,
'Plots', 'training-progress',
'Verbose',0);
Train the LSTM network using the trainNetwork function.

net = trainNetwork(XTrain,YTrain, layers,options);

1-77

1 fext Analytics Toolbox Examples

Training Progress (17-Jan-2018 11:33:05)

Acouracy (%)

30

20—

Results
Validation accuracy:
Training finished

Training Time,
Starttime:
Elapssd time:

Training Cycle
Epoch:

leration

lterations per epoch
Maximum iterations

Validation

Frequency:

Patience

Other Information
Hardware resource:
Learning rate schedule:
Leamning rate:

Learn more

0 1000 2000

Loss

5000

Accuracy

NiA
Reached final iteration

17-Jan-2018 11:33:05
26 min 9 sec

300730
5910 0f 5910
107
5010

A
NIA

single GPU
Constant
0m

Training (smoothed)

Training

— — ® — — Validation

Loss

Tre

0 1000 2000

Test LSTM Network

5000

\g (smoothed)
g

— — ® — — Validation

To test the LSTM network, first prepare the test data in the same way as the training
data. Then make predictions on the preprocessed test data using the trained LSTM
network net.

Preprocess the test data using the same steps as the training documents.

textDataTest = erasePunctuation(textDataTest);
textDataTest = lower(textDataTest);
documentsTest = tokenizedDocument(textDataTest);

Convert the test documents to sequences using the same steps as the training documents.

documentsTruncatedTest = docfun(@(words) words(l:min(sequencelLength,end)),documentsTes
XTest = doc2sequence(emb,documentsTruncatedTest);
for i=l:numel(XTest)

XTest{i} = leftPad(XTest{i}, sequencelLength);

1-78

Classify Text Data Using Deep Learning

end
XTest(1:5)

ans = 1x5 cell array
{100x75 single} {100x75 single} {100x75 single} {100x75 single}
Classify the test documents using the trained LSTM network.

YPred = classify(net, XTest);

Calculate the classification accuracy. The accuracy is the proportion of labels that the
network predicts correctly.

accuracy sum(YPred == YTest)/numel(YPred)

accuracy = 0.8837

Predict Using New Data

Classify the event type of three new weather reports. Create a string array containing the
new weather reports.

reportsNew = [
"Lots of water damage to computer equipment inside the office."
"A large tree is downed and blocking traffic outside Apple Hill."
"Damage to many car windshields in parking lot."

1;
Preprocess the text data using the same steps as the training documents.
reportsNew lower(reportsNew) ;

reportsNew = erasePunctuation(reportsNew);
documentsNew = tokenizedDocument (reportsNew);

Convert the text data to sequences using the doc2sequence and leftPad example
functions. Specify the sequence length to be the same as the training data.

{100x7!

documentsTruncatedNew = docfun(@(words) words(1l:min(sequenceLength,end)),documentsNew)

XNew = doc2sequence(emb,documentsTruncatedNew) ;
for i=l:numel (XNew)

XNew{i} = leftPad(XNew{i}, sequenceLength);
end

Classify the new sequences using the trained LSTM network.

1-79

1 fext Analytics Toolbox Examples

[labelsNew,score] = classify(net,XNew);
Show the weather reports with their predicted labels.
[reportsNew string(labelsNew)]

ans = 3x2 string array

"lots of water damage to computer equipment inside the office" "Flash Flood"
"a large tree is downed and blocking traffic outside apple hill" "Thunderstorm |
"damage to many car windshields in parking lot" "Hail"

View the top three predictions and their scores for the first report. Sort the prediction
scores and select the top three values.

[scoreTop,idxTop] = maxk(score(l,:),3);

Get the class names from the classification output layer (the last layer) of the LSTM
network.

classNames = net.Layers(end).ClassNames;

Plot the top three classes with their scores in a bar chart.
classNamesTop = categorical(classNames (idxTop));
figure

bar(classNamesTop,scoreTop)
ylabel("Score")

1-80

Classify Text Data Using Deep Learning

Score

Flash Flood Flood Heawvy Rain

This bar chart compares the top prediction made by the network, with the two next
highest predictions.

Example Functions

The function doc2sequence converts documents into a cell array of sequences, where
the columns of each sequence are the word vectors. If you have Parallel Computing
Toolbox installed, then the parfor loop runs in parallel. Otherwise, the loop runs in
serial.

function C = doc2sequence(emb,documents)

parfor i = l:numel(documents)
words = string(documents(i));

1-81

1 fext Analytics Toolbox Examples

1-82

idx = ~ismember(emb,words);

words (idx) = [];

C{i} = word2vec(emb,words)"';
end

end

The function leftPad pads matrix M with zeros on the left so that it has N columns.

function MPadded = leftPad(M,N)

[dimension, sequencelLength] = size(M);
paddinglLength = N-sequencelLength;
MPadded = [zeros(dimension,paddingLength) M];

end

See Also

docfun | LstmLayer | sequencelnputlLayer | textscatter | tokenizedDocument |
trainNetwork | trainWordEmbedding | trainingOptions

Related Examples

. “Extract Text Data from Files” on page 1-2

. “Prepare Text Data for Analysis” on page 1-16

. “Analyze Text Data Using Multiword Phrases” on page 1-51

. “Analyze Text Data Using Topic Models” on page 1-32

. “Sequence Classification Using Deep Learning” (Neural Network Toolbox)
. “Deep Learning in MATLAB” (Neural Network Toolbox)

